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equation. It Ls demonstrated by means of a series of digital computer exper-
Iments that, in the case where total mixing takes place within the turbulent
layers, the diffusion parameter herein developed is the valid one to use (in
contrast to "eddy ditfusivity"). The relation between this Inhomogeneous
diffusLon parameter and practical experimental measurements is given. The
motive behind this investigation involves vertical transport of pollution in
the environment in general and in the stratosphere in particular,
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The present formulation ti based in part on published and unpubLishid work

done with N, W. Rosenberg in 1975. 1 also wish to acknowledge help from

Neal Groasbard, not only for his programming, but for his "boundary condition

free" technique used In this report to calculate KB.PLUr , I also acknowledge
suggestion* from Dr. C. Storgis, Dr. T. Van Zandt, Dr. A., Quosada, J. Brown,
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A One-Dimensional Vertical Diffusion Parameter
for Extremely Inhomogeneous,

Layered Turbulence In Stratifie Fluids

1. INTRODUCTION

T'he main motivation for this investigation in the present concern about strato-
spheric pollution. The stratosphere is characterized by a high degree of stability,
and turbulence in this region occurs in the form of thin, random, horizontal,

pancake-shaped layers. The shear, or Kelvin-Helmholtz, instability is presumed
to be 'he mechanism for the formation of these layers. The nature of thin type orturbulence to discussed in Rosenberg and Dewan, IDwan (19I9a), 2 and Dewan
(1trlb).3 There are two purposes for the prDsent reporta The first to to overcome

ome of the inttiel criticisms we received (Rosenberg and Dewan1) due to the Nota

that we used the term "eddy diffusivity." As will be seen, we-will be considering

ian entirely new parameter which is, in a sense, completely different from the
usual eddy diffusion. This new parameter, like eddy diffusion, it phenomenological
in nature, however, this is where the similarity ends. To explain the new paras-
eter, this report shall make use of an halnagy between the random layer mixing

(Received for publication 13 June 1980)

1. Rosenberg, N.W. and Dewan, E.M. (1975) 2 tRat beri TUr0len.e Apo
Verticsil NffertIve Diffusion Co,0effn¶, AFCRL-TH-75-0519, AD A019 701,

2. Dewan, EM, (1979a) Ea=ttrmatep pf Vertical 44d Diffusion Rue to..T]urbtu]ent

Layers in the Stratohphere, AIOL-TR-79-0042, AD A069 750.
3, Dewan, E.M, (1979b) Minimh a tliow Turbulence and 8tratgosheric Eddy

Diffusion, AFGL-TR-79-OI, AD A0T4 406.
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process mentioned above and the rinite difr'ere'ne rornialisi used to numerically

simulate the diffusion equation. That such an analogy exists may surprise some

readers; nevertheless, it represents a good way to convey the physics of the proc-

esn. This report's se-!ond purpose is to demonstrate that our new parameter is
indeed a self-consistent, "diffusion like" parameter. Thin will be achieved by

means of a series of digital computer simulations.

The usual eddy diffusion parameter (eddy diffusion coefficient) for turbulence
transport assumes that, at least as a practical approximation, the turbulence is
essentially homogeneous in some sense, Pasquiil 4 defines eddy diffusivity, K, as

Ku vi (.

K 0 v I 1 .

where v and I are the velocity and size scale lengths, respectively, which are
appropriate for the turbulence in question, Another form to be found in the litera-
ture (Lilly et al, 5 Panofsky and Heck 6) is

K (2)

where T is the average eddy dissipation rate and NB is the buoyancy frequency.

1,1 Anumptlow and Definition of "Bulk Diffuhnvty"

We shall asslme that (a) the turbulent layers occur at random heights and at
random times (this assumption is usually made in the context of stable fluids,

see for epample, Panofsky and Heck, a Lilley et al, 5 Woods, 7 and Woods and
Wiley8 ), (b) there it no vertical transport outside of the turbulent layers (in other

words, between layers, motion is regarded as laminar), and (c) within the mixing

layers, the mixing is presumed to be total, Regarding this last assumption, it
remains to be proven correcti on the other hand, certain experimental observations

4. Pasquill, F. (1974) Atmospheric Diffusion, 2nd Ed., John Wiley & Sons,
5. Lilly, D.K., Waco, D.E., and Adelfang, 8,1. (1975) Stratospheric mixing

estimated from high altitude turbulence measurements by using energy
bugttechniques, ragbdeteT Naa Stratosohere of 1074, CIAP Monograp 1,

Fina Report, DOT TST-75-51, pp. 6-81 to a-90.
6. Panofsky, H.A. and Heck, W. (1975) Stratospheric mixing estimates from

heat flux measurements, The Natural Stratophere ot 197, ClAP Mono-graph 1, DOT TST-T70-51, pp. G-90 to PI-Ow,

7. Woods, J.D, (1968) Wave-induced shear instability in the summer thermo-
cline, j, Fluid Mech. 32t791-800,

8. Woods, J.D, and Wiley, R. L. (1972) Billow turbulence and ocean micro-structure, Deep Sea Research and Oceanic Abet, 19187-121,
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have been made which are consistent with It. These are the temperature-profile

studies of Mantis and Peppin, who note that balloon-borne sensors indicate that

in the lower stratosphere and upper troposphere there are regions of nearly
adiabatic lapse rates. Analogously, In the upper ocean where the stability situs-

tion Wi very much like the stratosphere, Woods and Wiley8 have reported step-

like structures in the vertical temperature profiles, Such profiles are consistent

with the hypothesis that total mixing can result from the turbulent layers. Finally,
one more assumption it neededi (d) there is enough horizontal homogeneity so that

a one-dimensional vertical transport model will be adequate.

In the next section, the mechanism for vertical transport by means of random

mixing layers will be explained. At this stage, however, the assumption that total
mixing takes place can be used to suggest (by means of a dimensional argument)

that any effective "bulk diffusion coefficient, " which parameterties layered turbu-

lence, could not be appropriately described by Eqs. (1) or (2). The argument to

based on the fact that the width of the layer and the time intervals between layer'

formations would determine the transport. These parameters do not explicitly

appear in Eqs. (1) or (2), and unless there were a proven connection, say, between

N3 and the time interval between new random layer profiles, it is not at all clear

that Eqs. (1) or (2) could be useful in the present context. On the other hand, the

parameter to be developed here will explicitly depend on layer thickness, A, and
the relevant time.interval, At.

Before proceeding further, it ts essential to precisely define KB, the bulk

vertical diffusivity parameter. Let IF designate the average flux of material

through a given slab of stable fluid. This slab is assumed to be very much larger
than the largest turbulent layers, Let 0 designate a scalar quantity, such al potern-

tial temperature or mixing ratio of some neutrally buoyant substance (for example,

pollutant), Then

KB (

where the overbar designates an average. This definition is based on Fourier's

heat transport equation (cf. Dewan 2 as well as Panofsky and Heck0).

S A.

9. Mantis, M. T, and Pepin, T.J. (1971) Vertical temperature structure of the
free atmosphere at mesoscale, J. Geophys. Res, 20t8021-8626.



2. THE MECHANISM OF TRANSPORT BY MIXING LAYERS

Figure I depicts a slab of stable atmosphere, and within the slab is located a
single turbulent layer. As previously mentioned, we assume that no vertical

transport exists outside of such a turbulent layer, but let us temporarily add one
more assumption: (e) the layer remains fixed at one altitude. We ask the ques-
tion: "What is the flux, F, between points Y and Z, located at the top and bottom
of the slab, respectively?" Obviously, there will be no transport of material from
point Y to Z. Equation (3) therefore implies KB • 0, mince there F is to be inter-

preted am a flux from point Y to point Z, We have an analogy here with the situa-

tion in which there is an electrical conductor located between two regions of inmula-
tion. One cannot a the conductivity of the" sandwiLh." One is left with a j
nonconductor (in the vertical), no matter how low the resistance of the conductor
inside may be. These considerations imply that the intensity of turbulence (once
total mixing is assumed) is of no direct relevance, and that, as will be made more
clear below, the temporal behavior of the layers ts absolutely crucial for transport

effects.

Next consider Figure 2. Here we consider a temporal sequence of layer for- 4
mation, Layer I ts the first to form, Total mixing takes place, and then the 7
turbulence decays in time. Due to the gradient of 0 which Is indicated, the mixing

causes material In the upper half (A) of the layer to move into the lower half (B) of
the layer. Next, imagine Layer II to form, and notice that Layer II significantly

overlaps the original position taken previously by I. When II has mixed, the profile
of 4(z) would again be altered to a single average value within the layer, This is
due to the assumption of total mixing. This process would result in a further net
transfer of 0 (for example, material) downward. It should be clear that some
material which was initially near the top of Layer I (for example, in region A) canr
find its way, at the end of this two-fold mixing process, to a point near the bottom
of Layer It. This simple example demonstrates the essential mechanism for ver-
tical transport by means of a random sequence of mixing layers in an otherwise

stable fluid (all other flow being laminar and horizontal). Such a process can

eventually give a net flux from the top to the bottom of the slab. Notice that there
are two conditions needed for the mechanism to function: (a) a large amount of
mixing within the layer, and (b) an overlap of layer positions.

After the random formation of turbulent layers in the above fashion, one could

calculate an average flux Tr acr-oss the slab, as well as 8;/Oz. Ke could then be
1 2Bcalculated ftorn Eq. (3). In Rosenberg and Dewan and Dewan, It was shown

that one can calculate an estimate for KB (designated here as K B.CALC) if one
assumes, among other' things, a steady state. This will be discussed in the

Appendix. The result ti

10
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Figure 1. Single Stationary Mixing Layer Within a Slab or Atmosphere. No
transport in this case
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Figure 2, Mechanism or Vertical Transport by Sequence of Lverlapping Mixing
Layers in the Presence or a Gtradient
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KB=CALC (4)

where A is layer thickness, the overbar is an average, and Atb to the average
time interval between layer formations overlapping the bottom boundary of the

slab (or any preset altitude, for that matter). Equation (4) is based on Eq. (3).

8. RANDOM MIXING AS A STOCHASTIC STIMULATION OF THE as
DIFFUSION EQUATION

The diffusivity given by Eq. (4) is new (as of Rosenberg and Dewan ), and
before it can be fully accepted as valid, It must be shown to be self-consistent. In
other words, the question rempins am to whether or not random mixing layer trans-
port, as estimatod from Eq. (4), is diffusive In nature in the sense that one could
use the same KB to describe the transport effects on any initial distribution of
6(z). In addition, it is essential to establish KB on a more reliable physical/

mathematical basis than has been done heretofore. The remainder of this paper
will be devoted to these objectives, and the purpose of the present section is to
connect the rRndom mixing layer process to the finite difference formulation of the
diffusion equation, (This onalogy was mentioned previously in the Introduction.)

It is well known that if one wishes to simulate a Laplacian, 7 i, by means of

a finite-difference num.erical scheme, one averages a given lattice point with all
of its nearest neighbors, at: I replaces the original value at the given lattice point

with tnis average. This prucess Is repeated for each time step, Now consider the
eflect of a mixing layer. In effect, the layer averages the values of 0(z) within its
boundaries and replaces these original values with the average (see Figures I and 2).

This leads to the Idea that random turbulent layers in a stable fluid could stochas-
tically simulate the one-dimensional diffusion equation.

In order to make this idea more concrete, we first consider a specific pattern

of a mixing layer sequence which results in an exact simulation of the finite differ-

ence diffusion equation. This pattern will, of course, be extremely regular, and
In this respect, will differ from the random situation postulated for stratified tur-
bulence. Nevertheless, Lt will serve to establish an important connection between

the two processes.
Figure 3 shows, in epoch 1, a vertical set of layers, each In sequence immed-

lately above the other. They nearly touch, but there is no overlap, These are to

be Imagined as mixing until all pairs of altitude points are averaged (we assume
each layer contains two altitude grid points). In principle, these layers would not

have to mix simultaneously. We assume, however, that the mixing process has

12
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Z EPOCH I EPOCH2Figure 3. A "Mixing Layer Simulation" of the Fi-
niteDtfference Diffusion Equation

terminated at s specific time which designates the end of Epoch 1. After this, the
original layers are replaced by a different net of layers (Time 2 in Figure 3),
which precisely and symmetrically overlap the positions of the original layers. In
other words, the "cracks" between the original layer boundaries are now in the
exact centers of the Epoch 2 layers, These layers then mix and perfofrn another
averaging of altitude pairs.

The above double sequence is then repreated for each time atep, and so on,
We now calculate Its effects. Let z, as usual, designate the altitude, and let Am
be the distance between the vertical points. Let t designate the time, and let At
be the Interval of time between steps. Each epoch described above corresponds
to only one-half of a time step, Wt/2. Thus, for •, at the end of Epoch 1, we have 4

t~~~~ + tZ +0(t + Z

hi other words, 0 at z, at the end of the first epoch, equals the average of taken
at z and z + Az. The mixing layer Includes both z and z + At, the point a being
located a distance (l/2)(Aa) from the bottom of the layer, while (z + Az) would be
(3/2)(Az) up from the bottom (layer thickness - 2 rz), Next, Epoch 2 of the time
stop (Epoch 2 in Figure 3) results in

(t+ At, Z) .(t + + )+(t+ z, Az)A(

13



In uthe' wordti' tis, tinit' thc uwve'vqgv,, or' uixing, nVolvsH tht, gr'id poIlt itilu oti-

Lately below z (for example, z - Az), We now wish to relate (t + Mt, z) to the

original values of s nt t. Therefore, insert Eq, (8) into Eq, ((0) to obtain

SO(t At z)120• a(t, 01 + #(t, z + As) + 0(t, z - 441] (7)

Next, we put Eq. ('7) into the form of the finite difference equation as followas

first, the finite time derivative will be defined by

S. .a dit, + A - (t,) (8)

and the second spatial derivative (see any book on numerical annlysis) will be

defined

6 (t. 2) 1 6(t, z + A,%) 2 6(t, ) + (t. - as) (9)

Finally, we define K as

4 At

Rearranging Eq. (7), and using Eqs. (8), (9) and (10), we obtain

V K 11)

which is, of course, the finite difference diffusion equation, (Note the resenmblance

between Eq.. (10) and (4),) Thus, the sequence in Figure 3 exactly simulates

Eq. (11). Actually, there are many more sequences which would effectively dc he

same thing, and the-uniqueness of the process in Figure 3 Is merely its simplicity.

The above discussion carries an Important messagel namely, that in spite of

the extremely Inhomogeneous and discrete nature of the process, a "diffusion" 1 •

parameter, called K above,, has an "exact" connection with the process of diffusion,

Layered turbulence ti extremely inhomogeneoun in the vertical direction. It is
difficult to imagine a form of turbulence which is more inhomogeneous in toLt
CEquation (5) must be modified so that it can be used to be substituted into both

terms in the numerator of Eq. (),.

14
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respect. Nevvrthehess, we find here a way to meaningfully assign a diffusivity to

the process.

As was mentioned, layered turbulence in actual fluids would differ from the
above process by virtue or its stochastic nature: layers would presumably form
at random altitudes, at random times and with random thickness. This leads to

the next question, Could such a random process effectively simulate diffusion In

a manner analogous to the above? Also, would it do so in a consistent manner?

In order to show that the answers to the above questions are affirmative, we
shall make several digital simulations of the stochastic mixing process. The
effective values of KN will be determined directly from the simulated results by

means of a comparison with continuous diffusion theory. We shall see that (a) the

behavior of #(a) in time is extremely similar to the predictions of continuous
theory, and (b) the KB values inferred from the behavior of the simulations are in

surprisingly accurate quantitative agreement with one another.

4, SIMULATION PROGRAM FOR K0 a Vl(•J8s)

In the following, a digital program for simulating the effects of random mixing

layers will be described. More specifically, a program for ascertaining the value

of K. on the basis of Eq. (3) (see this section title) will be discussed in some

detail, With minor modifications, the same program also provides the simulations
to be given in Section B3, At the first reading, some readers may wish to skip some
of the details,

Figure 4 shows the essential aspects of how the simulation was done. A "slab"

of thickness R is depicted in an "environment" (z w 0 to z - max), This slab could, 4

for example, represent the entire stratosphere or upper ocean, or it could repre-
sent a smaller height region of interest, It it the region for which we seek a bulk

value of diffusivity. The reason for the "environm,nt" will be explained below.

Inside the slab is a "turbulent" layer of random thickness A (at random altitude, z),
and within such a layer, the values of 0 would be replaced by the average value
within the layer. The initial value of 0 is shown, t,nd it ts a straight line with ,

differing by unity in going from the bottom, B, to the top, A, of the slab. In other '4

words, the slope of 0 across the slab is (l/11), as shown; the same slope continues
throughout the slab's "environment". 1

The height z is chosen by means of a random-number generator. As for the

thickness, A, the following procedure was used. A second random number gen-
erator (which was independent from the one used for z) was used to pick numbers

from 0 to 99. The possible thickness of layers were 36z, 54z, 7,z, 9Az and
IltA, that is, the layers were to contain from 3 to 11 points (odd only), and in the

15I
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FIRST LAYER

UPPER CURSORI ýTHIRO LAYER

TURS
'UT? IT? LAYER

N (

401LOWERt CURSOR

ýFIRST TUNE, LAYER TO
CONTACT BOUNDARY

Figure 4. Schematic Representation1 for Simulation of Vertical Transport Through
a Slab and the Techniques for Avoidance of Boundary Conditionsi

calculationsl Az aC 50n. The use of odd integers made it possible to have an unam-

biguous center point, and It wasn this center point that was placed at the point z

previously selected, The mapping between the numbers 0 to 99 (designated here as

N) and A is given by Table 1. The distribution of A given by Table I io based upon

the results of R~osenberg and Dewan. IWhile there remain some unanswered quesn-

tions regarding the accuracy of this distribution at this time, kt in possible to may

that it in a reasonable one to use for simulation purposes. The actual resulting

value of KB that will emerge, however, will be, for present purposes, regarded as

arbitrary. In other words, the purpose of this paper io to develop a method of

in



describing turbulent transport in a stable fluid in general, and its application to

specific data will be done elsewhere.

Table 1, Distribution of Layer Thicknesses A

N Range A

oS NSz 53 3A:

53 c N :s 74 542

74 < N sa S 762

05< N s 92 Sam

92< N s 99 11.
SI n ea1 ad 3 codtin

In Rosenberg and Dewan and Dewan, some specific boundary conditions
were used at the top and bottom of the slab. This caused more than one reader to

raise questions, and it also gave rise to confusion about the mathematics and the

physics of the situation. For this reason we devised a method that completely

eliminates any boundary conditions. This is the reason that the slab in Figure 4

ti located within an "environment". (The technique was suggested by Neil
Oroasbard, who was also responsible for writing the computer programs used

below.) The random-number generator for z gave values of uniform probability
from a i o to z a max. Layers generited outside the slab were not counted by the

program, but all layers within the slab, including any points within, were counted.
This count was used in a manner to be described. The point here Is that the layers

outside the slab served only to "cause transport" across the boundaries of the
latter in a reasonable manner.

One more problem remained, The environment was finite and therefore It

also had boundaries, Thus, there was the question of how to account for the
effects of these boundaries, The "environment" was chosen to be much larger

than the slab, and the slab itself was located in the center of the environment, as
indicated. A technique to be described was used to trace the influence of tie bounds

of the environment. This influence propagated toward the slab, and at the moment

it reached the slab (if it ever did), the program would automatically terminate, ,

The following procedure was used to trace the Influence of the boundaries at

a # o and a - max, As soon as a layer was generated which in any way contacted

the boundary, a "cursor" (shown in Figure 4 as an arrow) would be placed ( In
effect) at the edge of this layer which was nearest to the slab, When a subsequent

layer overlapped the cursor, the latter was moved again to that layer edge nearest

17
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to thv slab. At the bottoni or V~igure 4, this has ocvurrvd tw ice, and at tile top,
three tinmes. l'ht, number gvnvraouo would genv.rntv numbfeis vitcIdilvely t'or values~
of z which were between the upper and lower cursors and the programn would ter-
nitnate it either cursor came within a distance 114z of the slab. Thus, the bound-
aries had no effect on the calculation 1)1 flux through the slab,

In order to calculate %~, the program, in effect, measured the flux, r~, out of
the bottom of the slab, and used Eq. (3), its wasn mentioned. 8#/87 was taken as

Rwhich warn justified not only from the reasonableness of the aisuniption of
constant 8#B in a steady state process, but also by the actual results to be
displayed below (see Figure 0 Dthrough 1). We now consider exactly how 7 In
calculated,I

As mentioned, F io the amount of " material mixed out" of the bottom of the
slab per unit of time. The time was calculated by adding I to .A register labeledI KOUNT each time a layer Included a point Interior to the slab, The total timet
was calculated fromj

t (KOUNr I, *at (12)

where at is the time interval between layer formations within the slab. Thisn
quantity, At, is to be regarded as the average time between layer formiation* In
the actual situation which involves random times for layer formations, but the
exact connection between At and actual measurements will be described below,
The average flux will be the total amount of material (per unit of area) to exit the
bottom of the slab (at the time t0 divided by t, How is the amnount of miaterial
mixed out in one mixing event across the boundary to be calculated? This perhaps
explained most simply by metAns oft a specific example, Let the thickness be
A ft5 Az, and let It be positioned across the lower slab boundary, as shown in
Figure 5. Lot the values otit at the center tit each "c~ell" (if the layer be given as
indicatted in this figure, that is by 61 to 45, Only the two uppe.'most cells will be
within the slab, and the rost will be below, We wish to calculate how much nmate-
rial per unit of area Is removed from the two upper cellm by the I'mixing" or
averaginR proc'ess.

'rite initial aniount (it material, MI, In the upper cvills (rettiobeir~ing that 6
here will be it density) Is

hi AAz (0, + *ft) (13)

where A to the area, After the value of 4 has been made homogeneous (within A by
mixing or, equivalently, by averaging) the now aniount oit matorial In the two toll

ilik
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Figure 5, Explanation of the Calculation of %m by Means of Flux Out of the Bottom
of ihe Slab by Means of a "Mix-Through" Produoi

Mr. (AAm)(I 101+0)+03 + 0,j (14)

The amount of material per unit area passing through the boundary by this mixing
process is given by

DUMP. ( 115) -

In general, the values of M and Mr would depend upon layer thickness and location,

etc. Each time such an event occurred, an amount given by Eq. (15) was added to

a register called DUMP. Thus, DUMP, at any time t, was the total output per unit

area. The average flux, •, was therefore calculated from

4f (OU11)

-t'A
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hence, from Eqs. (10), (3) and 8;/Bz R"I, we obtain

[ K3.FLUX Dm

where tlhi subindex "FLUX' will distinguish the estimate of KB from others to be

described below.
The actual simulation results from iq, (17) will be shown in Section 8, l•irst,

however, some other methods to estimate KN will be described. The latter are
based on the idea that solutions to the diffusion equation will depend on a constant
value N 3, which is to say that N• will be independent of initial or boundary con-
ditions. We shall consider three peocitio cases and determine if the estimates of
K3 based upon continuous theory and aimulated behavior is self-consistent. These
oases are (a) #(s) initially is a delta function at the center of the slab, (b) the
initial #(0) interior to the slab is a constant (with respect to a) and the "walls" are
"held" to a different constant value higher than the interior value, and (c) #(%) is
a straight line, %nd the slab boundaries are insulated from the "environment', In
effect, K. will be estimated trr niti,, diffusion effects in theme three cuses,

SL CALCULATION OF K3B FROM DIFFUSIVE IEFlCTS

In this section, we examine the solutions to the continuous, one-dimensional,
diffusion equation for the purpose mentioned above,

5.1 Delta Function

The one-dimensional diffusion equation is

The solution in the case where the initial 0 distribution is a delta function im well
known (see Carrier and Pearson, pp. 2•5-34t 0 ), It is given by

I )/(4Kt) I

a... . - - --

10. Carrier, 0.IF. and Pearson, C.E 10(1076) Partial Differential Equations,
Academic Press, Inc, . ......

20]



Ul NA

where zo designates the initial location of the delta function. The domain of this

solution is -c< < r< co, and there are no boundary conditions. (Equation (19) in

the Green's function when the Initial condition on #(a) Is specified.)

Given the behavior of #(s, t) under these conditions, one can estimate K from

the rate of spread In a simple way, that Is by messuring the I/e hal/width, r., at

a given time, The latter is obtained from Eq. (10) by setting the exponent equal

to -I. Solving for K

K-.DELrA M (20)

(Note that the "decay, as used here, is spotIal not tempnoral,) Thus, K can be

estimated by the amount of spread of the initial delta function. A refined estimate

could be obtained by appropriately combining several such measurements (taken

at a number of times), This, however, was not done here. Figure 8 shows

schematically the typical behavior to be expected, that is, the function decreases

in height and it spreads as time increases.

! 1
Si,.,-EAR L.Y

EARLY

LAT E

Figure 6. Schematic Drawing of Delta Function Diffusion Expected
from Continuous Theory
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5.2 Intrusion from Bloundaries

Next we consider the case where we have a slab such that O(z, o) o aInside
and O(z, o) - 00 (a constant larger than zero) outside. We assume infinite con-
ductivity outside, and we want to know #(a, t) insde (that is, the development of
*inside as a function of time). Notice that, as was the came for Figure 8, the slab

Is turned sideways, with z going to the right in Figure 7. Figure 7(a) shows the
initial condition while Figure 7(b) shows schematically how 0 diffuses inwards
from the boundary. The exact solution of Eq. (18) for the semi-infinite slab came
will be found in Spiegel, p. 232. (For early times, in our form of simulation,
the intrusions from the two sides will not influence each other at all, and therefore
this solution will suffice for our needs.) This solution lot

ON.~t 0~( -ef) (21

which in Figure 7 would apply only to the left side. The definitions of y and erf(y)
are

- (22) P

and

y 2
e rf(y) st 2L. f e du (23)

A tabulation of the values of erf(y) is to be found in Abramowitza nd Stvgun, P.3$11. 1
With this formulation, one can start with a given O(z, t0 (from the simulation) and
estimate K numerically In the following manner, First, y is eatimated via
Eq. (21), from a given 04z, t0 for a particular choice or hath z and t. Then solving
Eq. (22) for K

K (21)

11. Spiegel, M.Rf. (1906) Theory and Problems of Laplace Transformd,
Hchaum Publishing l~o.

12. Abramowits, M. and Stegun, L.A. (1984) Handbook or Mathematical F1unctliois,
N. B. S. Appi. Math. Series N 58.
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and since z, t, and (from the tables) y are all known, K can be estimated. The

subscript "[NT" stands for intz'uaion,

,, , .. [A]

ISO
SqU~A~Y Q~t4A~. ..-

z[,• '0

Figure 7, Expected Behavior of Diffuslon Through Aoundtrzien in Continuous
Theory of Diftftuon
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5.3 Insulated Slab-initially Linear 0(c,o)

Figure 8 depicts a slab with initial distribution of • given by
L/

(25)

where

1.111 (26)f

and the thickness of the slab is given by R and maximum + by o00 We assume that
the slab is insulated at the boundaries, therefore

~tii *0(27)

These boundary conditions are explained in any book on heat conduction, The

analytic solution of Sq. (16) with these conditions to (see for example, Dewan3)

where g(n) it defined by

0 n even

g(n) • (29)
-I n odd

Define the symbol AI(t) to be the amplitude of the first harmonic of the solution of

Eq. (28), Thus

2
A Mt) (-0. 405) e-K(ff/10)t (30)

'rhis is obtained from Sq, (28) by setting z a, calculating 4/r 2  0. 405, regard-
ing the factor (1/2) as the zeroth harmonic and setting•o = I for' convenience from
this point on.

Suppose that we are given O(z, t) (from the numerical simulation), and we wish I
to calculate K from this solution. The procedure we shall use Is to calculate the
first harmonic numerically, and to thus ascertain A at a given value of t, Then

K can be entimated by solving Eq, (30) for Ki

24
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PFigure 8. E2xpected Behavior of Temperature Inside an Insulated Slab with Initially
Linear Temperature Profile, As time passes the higher harmonics quickly damp
asd only the fir'st harmonic would survive visily
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We now have the means to estimate the bulk diffusion parameter, KB, directly
from solution behavior for the three special cases of interest. We now turn to the
actual simulations of the random mixing layer situation.

6. CONNECTIONS OF CERTAIN PARAMETER VALUES TO EXPERIMENTAL
DATA AND SIMULATIONS OF MIXING LAYER TRANSPORT

6.1 Relations lBetweon Parameters At and A and Pouible Memurements

Simulations in general can be performed only for numerically specific cases.
In this subsection, we wish to justify that a certain choice for At and A is a rea-
sonable one in connection with atmospheric studies, We also wish to show how
thebe parameters could be measured in practice.

How could one measure A, the turbulent layer thickness ? One method that has

been employed (Barat1 ) uses a high-resolution wind fluctuation measuring device
mounted on a Lalloon, When the balloon descends through a turbulent layer, the
turbulent fluctuations can be detected, and the information telemetered to a ground
station. Such measurements made in the stratosphere Indicate that a typical value
of A would be around 200 m.

An alternative measurement technique estimates A from the Richardson num-
ber profiles (Rosenberg and Dewan1 ), The present model was originally created

for exactly this purpose, (In other words, we needed\a method to convert Ri pro-
files into estimates of transport. ) The Richardson number profiles are ascertained
from measurements of the horizontRl winds as a function of altitude, in conjunction

with the vertical profile of the temperature as well. Triangulated rocket-laid smoke
trails is the method of choice for high-resolution wind profiles. The estimates of A
can be obtained from the fact that when the Richardson number, RP, is less than 0. 25,
the layer will, presumably, become turbulent. When account is taken of subse-
quent spreading of the layer, A can be estimated. According to Rosenberg and
Dewan, 1 - 200 m Li a reasonable number as estimated by this technique. For
further discussion, see Dewar, 2

The parameter At (which stands for "time between onsets of layer formation"
in the simulations to be given below) is measured less directly, and is tied
methodologically to the method of estimating A . In the case where A is measured
13. Barat, J. (1975) Etude Experimentale de la Structure du Chami de Turbulence

dana la Moenne btratospe•re, . A. ca c ars 280, Ser. 13,
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from R profiles, the following method is appropriate. First (see Rosenberg and

Dewan, and Dewan, 2 ) we make the simplifying assumption that, if over a certain

height region (slab) there are usually several layers detected, then such a profile

will, on the average, be replaced by another profile at a time .t, Inter. The sub-

index, r, is for "time frame", The simplification consists of replacing the random

times of layer formation by .tr between profiles. Once R, < 0. 25, the layer to be

considered is unstable; however, a certain time must elapse before the instability

is replaced by an actual "breakdown" and subsequent turbulence, Shortly after

the latter occurs, R, will rise again above the threshold value (to a value of 0. 7,

perhaps), and the turbulence will begin to decay. At this point, the R, profile

would no longer indicate the subsequent generation of the turbulent layer. Based

upon the measurements of Browning14 of Kelvin-Helmholta billows in the atmos-

phere by means of radar and balloon measurements, it was estimated (Rosenberg

and Dewaan1 ) that at 2  1500 s0t In order to ascertain At from 4 tf, one must

first estimate the average number of layers to be found at any time in the slab,

designated below as n, Then

At n (32)

If, for example, P* designates the average fraction of the slab of thickness R that

is turbulent, and suppose we are given X, the average turbulent layer thickness,

then

n _. . (33)

from P* a (nX /R).
In the case where the profile of turbulence is estimated by means of In-situ

measurements of velocity fluctuations, Wt would correspond to the average time

for the average layer to docay (from time of measurement) to the level where it
would be below the "threshold intensity" and would be called laminar, Based uponj

this given threshold,t P* would be ascertained (as well as X), and again Mt would

be estimated from Eqs. (32) and (33). For further discussion, see Dewan. 21
fActuaIly, Mtf would correspond to the average time between the observation of
oIu 'l 0. b5 and breakdown. The latter wouland wod on growth at time or observa- "

tion and RV.

•If the threshold were high, PC would be measured as small, but so also would atf i
(because the layers would disappear more rapidly below threshold). We assume
here that the ratio (P*/Atr) remains Independent of the thresold over, it reasonable

range or the latter.

In1 this simulation A 277 m, whereas • 240 m,

14, Browning, K.A. (1967) Structure of the atmosphere in the vicinity of large
amplitude Kelvin-Helmholtz billows, Roy. Met. Soc. Quart J. •7t283-290.
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6.2 Simulation Reults

8. 2. 1 KB.FLTr.

Figure 9 (A-.C) shown the value of KB.FLUX, based on Eq. (17), as a function
of time, as the time bane (number of "counts" or layer mixing events) increases,
K.FLU converges to a fixed value. Parameters were assigned as follows,

S0points, and as 50 ml where Ft - 20X 103 m, Altoo, • 240 M and

v - 277, as determined from the distribution designed into Table 1, From
Rosenberg and Dewan's 1 result of at a 1500s, we use

S(. f 240 1500) ...

where P* • 0. 05 to taken from the same reference. The simulation
KB.FLU. • 0.311 m 2 /s.

Figure 9 (D.4) shows the important result that O(z) to essentially unohanged

during this simulation.

I.I

. 1

Figure 9. Bulk Dti funivity, K13 (as Calculated In the Simulation
Via the FluxM as a Function of Time. (a-.C) Time is given in
terms "'mix through" events, 100 '- 8, 000 mixing event. Parts

dthrough I show the initial and subseqent profiles in ot-der to *demon. trate that the mean slope of 0 remains essentially con-
stant. (The profiles are shown at intervals of 5, 000 mixing
events)

28I



4/

Fig~ure 9. Bulk DUN* isvity, X• (as Calculated in the Simulation
Via the Fblux) as a Function o[•rme, Wu-0) Time to given in
terms "mix throu h`1 events, 100 -. 8, 000 mixing event. Parts
d throullh I show the Initial and subsequent profiles I~n order to
demons rate that the mean slope or 0b remains essentially con-
stant. (The profiles are shown at Intervals of 5, 000 mixing|
event s)
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Fitgure 9, Bulk Dittusivity, K (as Calculated in the Simulation
Viet the F'lux) as a Function ot Trime, (a-o) Time to given In
terms "mix thr-ugh" events. 100 - 8, 000 mixin evont. Parts
d through I show the Initial and oubsoquent, profile's In order Lo
demonstrate that the mean slope of 0 remains essentill~y coun-
stant. (The profiles are whown at lntervalm of fl, 000 mixing
events)
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Figure 9. Bulk DlffudivLitI 1K (as calculated in the simulaiton

Via the Flux) go a punotitin of Time,. (&.c)! Time. to fi.et.I

dthroug l sh~ow th initial and subsequent profles. in order to
Shruhtiw .demonstrate that the mean slope of 0 remains essentially co<n-

stan~t. (The profiles are shown at intervals of 5, 000 mkixing

events)
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8.22 -DELTA

Figure 10 (A through H) (compare the continuous case) shows the revults it

sequence of layer mixing events upon an Initial #(a, o), which Is a delta hinction.

In this numerical simulation it is given by maro for all points in the range, a (of

400 points), except for the. center point (z ), which was set to the maximum value
(100). At the arbitrary t KOUNT a 30. 4X 10 (30, 400 layer formations). :hd

with 360 seconds assigned to each count, KB.DELTA was estimated from Eq. (20).

The value of the peak was 3.0, having started from 100, and its (1/9) value Is

therefore 1. 1. The values of the end points of the two re (one per side) were esti-

mated from the printout. They occurred at z a point 125 and point 273, The neeteir

was located at point 200. Thus, using At P 50 m, the average r, was determined

to be re • (3100) moters, thus

(3700) 2 2 .lm/
KS-DELTA (4)3 , 0.)31 M (35)

which agrees with KB.FLUX,

t COUNT 16 1000

!

_a

Figure 10. Simulated Evolution of Delta Function When
Exposed to Random Mixing Layers. A 3-D plot, H, sum-
marizes the evolution
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COUNT IJ 4000

Vligure 10. Simulated Evolution of Delta Pulnction When
[ ~Exposed to Hanndom Mixingl Layers. A 3-D plot, H, surn-
i ~marls~es the evolution
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Figure 10. Simulated Evolution of Delta F'unction When Exposed to Random
Mixing Layers. A 3-D plot, H, summarizes the evolution

0. 2.3 K.NT

Figure 11 (A through D) shows the sequence for the intrusion case, At
KOUNT a 14 X 103 , the value of z was arbitrarily chosen to correspond to point
number 51, or 51 X (50 tn/pt.) 2. 55 X 103 m, from the origin, From the printout,

0. 167 at that point and time, The value of t was determined from

t - KOUNT (360) (36)

or t a5.04 X 10 s. From Eq. (21) (0o 1)

orf(y) - 1 - 0. 167 - 0. 833 (37)

Using the tables in Abramowitz and Stegun, 12we found y 0. 8, Thus, from1

Eq. (24)

K 1(-)2 0,34 m /a (38)B'IT B ,. 0X X10 (2)(0.90)
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Figure 11. Simulated Evolution of the Came of Infitntely Con-
ducting Walls and Dittfusion Inwards by Means of Random Mix-
ing Layers, ll-E is a summary 3-D plot
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g COUNT IS 8000
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Figure 11, Simulated Evolution of the Came of In•initely Con-
ductinwg Walls and Diffusion Inwards by Means of Random Mix-
Lng Layers. 1l-I Is a summary 3-D plot
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Fiure 11. Simulated Evolution of the Came of Infinitely Conducting Wall$
and Diffusion Inwards by Means of Random Mixing Layers. 1 I -E io a sum-
mary 3-1) plot

6. 2.4 K B-INSUL

F'igure 12 (A through G) shows the simulation for the came of the insulated slab.

At KOUNT w4 X 10(t m 1, 44 X 10~ s), a Fourier transform was obtained from the
simulated solution by means of a Fast Fourier transform analysis. This gave
A (t) -,(-0, 3 81), Inserting this Into Eq. (3 1)

F 1-0.3611 (2 rn) 04 m

-K In,

K3EINSUL 0- 1n 4 X 1

%L

X0, 324 m2 /s (39)
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FI'gure 12, Simulated Evolution ao "Inmulated Slab" Case Via
Randorn Mixlng Layers
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lIgre 12. Simulated Evolution or "Inmulated Slab' Case Via
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COUNT IS 60000

q COUNT IS 80000

1 1.

FigUre 12. Simnlated !Evolutijin of "Ins~ulated Slb Case, Via
Random Mixing~ Layers
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q COUNt IS 100000

2 1

FIgure 12. Simulated Evolution ot "Insulated Slab" Came Via
Random Mixing Layers

.2.8 V.-CALC

We now use s~q, (4). Here we use

1t!
Atb (40)

(Dewan 2 ). Uuing P* 0.05, a•t 1500, V 277 r

KB-CALC (2 77) (L7 0.32 mn/2 (4.)

6,1 Summaty of Simuetlon Rasulls

Table 2 summarizes the above results, and It shows in a convincing manner
that KX, no matter which way it is estimated, gives a melt-consistent remult,

K
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Table 2. DUitributiuni Parameter, KIP (of, Various Camue

K1 .FLUX ' 0.31 m 2 /, (6.04 X l0 .) A /At* a 1.45 X 10'3 ( A/ At)

KB-ET 0.31 - (8. 04 X 10*3) A2 /.atf 1. 48 X 10' (A 2 At)f

KB-INTR " 0,34 - (6,63 x 10- 3) A2//At 1.59 X 10-3 (A 2/at)

KB-INSUL " 0,32 - (a. Box .to' 3) A / 1.50 10" (A /,,t)

KB.CALC * 0.39 - (6.25 X 10 3) A2/Atf 1.5 0 l0"3 (A2 /At)

The last column is rendered in units of A and AtrY This "nondimensional" form
allows one to apply the formalism to fluids with other scales (for example, the

ocean). Notice that only single values of a and t were used to "measure" the
spread in each case, t being chosen arbitrarily, Obviously, more pairs could have
been used to increase the accuracy of KB estimates from the diffusion effects. The
consistency shown in Table 2 is therefore rather remarkable, and we think one

need go no farther at this point to justify the assertion that the "mixing layer" K3

of this paper is self-consistent, at least to the first significant digit.

7. SUMMARY AND CONCLUSIONS

In this paper, a new diffusion parameter or "effective diffusivity" has been
proposed, which is designed for the extremely inhomogeneous case of layered

turbulence in atratified fluids. Random occurrence in altitude, time, and layer

thickness were assumed, as well as total mixing within layers, The last assurnp-
tion can be relaxed, it necessary, as shown in Dewan. 2

The present diffusion parameter describes a process which, In essence, im a
sort of stochastic, finite difference simulation of the diffusion equation that is
presumed to occur in the stratified fluids to be found in nature. While the basic
assumptions remain to be verified, it is hoped that the formalism developed here

will be useful in the estimation of vertical transport by turbulence In the strato- .4
mohere and upper ocean.

*This amsumes that P* has a specific value, namely P* 0. 06.
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Appendix

Continuous REtimrate of Amount of Material Far Unit Arm
Piouing Through Bottom of 'imob' Due to an Average MixingEvent @nd Modifietion of the Notinwit of Kl&CAi.LC;

Let the bottonm (f the slab be located at Z . Z3. Let Z d-meignate thv centrrc

of a mixing layer, and we shall assume that the layer overlaps the location (it ZI-.
The latter condition, whore A in thet thickne•m of the mixing layer, IN

2 - Z13 - A (Al1)

Let H(Z) be the height by which the mixitng layer oxtends above ZW, Then

14(Z + )o.1 (A 2)

Define M(Z ) to be thi' aniount ir nmate' e'h I I' pv unit ar ea whi('h pNI1H'N liirolough tihl'

Z - ZB boundnry as a result or mixing. T'hetn

M(Z)0 M1 (ZO) M r(Z) (AWO)

wherv Mi let defined an thi, initial amount or matvial per tunit area in the phn't or

the layr whit-h in aborv, Zp, and Mf lN thi amlliounit aftm, the' mixillm,
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Aseuming, as in the text, that O(Z) i linear and, for convenience,

O(Z)M a.Z 
(At)

where a is oonstant, we have (using a a 8#/&R)

M1(Zo) * (height of layer above Z.) X (average initial concentration)

ZB+H

ra•H(MO) ,,H(Z) (A 5)

Similarly

Mi(ao) * (height of layer above N) X (average final concentration)

zo +

.~ ~ Z 1zo •(6

(A)S

When M(Zo) is averaged over all possibilities consistent with Eq, (Al), we

have

zB +

A f (M,(Z0, - M$(Z0,) d20  (A T,

ZB-

After the calculations are carried out,

M~zo)(AB)*

eThis result was first obtained by T, VanZandt (private cornmunicatIon),
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The estimate of K• given as Fq. (4) in the text would thus be changed sonue-

what. Given that Atb t/P*, and identifying the flux i in Eq. (3) with

(A 9)

thus, we obtain the new estimatet

( WP (A 10)

This differs from Eq. (4) by a .'ator of 2/3 but, in spite of thv agreement

between the simulations and Eq. 14), Eq. (A10) would be theoretically more

accurate than Eq. (4 )0t Equation (A10) ti presumably the correct estimate to use

in future analysis of experinental data along these lineat however, no explanation

is available at present as to why Eq. (A,10) does not agree with the simulations,

whereas Eq. (4) of the text doeem A 5-point numerical, finite-difference formula-

tion of this appendix was carried out and the result was essentially Identical to

Eq. (AS). This remains to be clarified.

tEquation (4) was derived by using MOZo) a 0 (see Rosenberg and Dewan I. This
means thai, instead of a "mix through" process, there was a "dump through"

pr1sseI


